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, Abstract—Background: Traumatic brain injury (TBI)
results in an estimated 1.7 million emergency department
visits each year in the United States. These injuries
frequently occur outside, leaving injured individuals
exposed to environmental temperature extremes before
they are transported to a hospital. Objective: Evaluate the
existing literature for evidence that exposure to high temper-
atures immediately after TBI could result in elevated body
temperatures (EBTs), and whether or not EBTs affect pa-
tient outcomes. Discussion: It has been clear since the early
1980s that after brain injury, exposure to environmental
temperatures can cause hypothermia, and that this repre-
sents a significant contributor to increased morbidity and
mortality. Less is known about elevated body temperature.
Early evidence from the Iraq and Afghanistan wars indi-
cated that exposure to elevated environmental temperatures
in the prehospital setting may result in significant EBTs,
however, it is unclear what impact these EBTs might have
on outcomes in TBI patients. In the hospital, EBT, or neuro-
genic fever, is thought to be due to the acute-phase reaction
that follows critical injury, and these high body tempera-
tures are associated with poor outcomes after TBI. Conclu-
sion: Hospital data suggest that EBTs are associated with
poor outcomes, and some preliminary reports suggest that
early EBTs are common after TBI in the prehospital setting.
However, it remains unclear whether patients with TBI have
an increased risk of EBTs after exposure to high environ-
t available from the authors.
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mental temperatures, or if this very early ‘‘hyperthermia’’
might cause secondary injury after TBI. � 2015 Elsevier
Inc.

, Keywords—hyperthermia; traumatic brain injury;
fever; prehospital
INTRODUCTION

Every year, over 1.7 million patients are evaluated in
United States (US) emergency departments (EDs) for
traumatic brain injury (TBI); 275,000 of these patients
require hospitalization, and 50,000 die (1,2). The
lifetime cost of TBIs sustained in the year 2000 alone
was estimated to be over 60 billion dollars, and more
than 2% of the US population required long-term assis-
tance with activities of daily living as a result of TBI
(3–5). Secondary brain injury is a major contributor to
increased morbidity and mortality from TBI. Secondary
damage occurs after the injury, when blood or oxygen
transport to the brain is compromised. Several factors
have been identified as causing secondary brain injury
in the early patient care intervals, including
hypotension, hypoxia, and hyperventilation, all of
which have been independently associated with
increased mortality after TBI (6–9). Although these
factors are known to contribute to secondary brain
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injury by decreasing central nervous system (CNS)
perfusion, they also result in electrolyte shifts and
initiation of cellular cascades, ultimately resulting
in the induction of apoptosis in susceptible CNS
cells (10).

In the Intensive Care Unit (ICU) setting, patients with
severe TBI are known to develop elevated body tempera-
tures (EBTs), or neurogenic fever, often associated with
poor outcomes and increased mortality (11–14).
Although poorly understood, it is thought that these
neurogenic fevers are caused by a failure of the brain to
appropriately regulate temperature after injury, a
process known as thermodysregulation (15). This
inability to properly regulate body temperature may leave
the patient susceptible to wide fluctuations in body tem-
perature, either environmentally induced hypothermia
or EBTs. The majority of the current literature focuses
on EBTs induced by thermodysregulation, occurring
hours to days after injury (the acute-phase reaction).
However, less is known about whether the propensity of
severe TBI patients to have dysregulation might also
put them at higher risk for environmentally induced
EBTs while still in the field (i.e., during the prehospital
phase of their care). Given the fact that so many TBI pa-
tients have issues with thermoregulation, there is a possi-
bility that they are ‘‘set up’’ to be sensitive to high
environmental temperatures that may happen in the pre-
hospital environment. Furthermore, even if this is not
the case, the simple fact that such patients may have a sig-
nificant environmental heat load prior to arrival at the
hospital makes it possible that some of them present
with passively induced higher body temperatures. Thus,
even if thermodysregulation is not yet occurring, they
may simply ‘‘start hotter’’ at the beginning of their hospi-
tal course. Thus, they may be at higher risk to be affected
by subsequent dysregulation based simply upon the fact
that their body temperatures werewarmer when their hos-
pital course began.

Environmental hyperthermia has long been recog-
nized as a deadly emergency medical condition that re-
quires rapid treatment (16–18). Hyperthermia can occur
rapidly in vulnerable populations, such as in children,
the elderly, undocumented immigrants, or those with
genetic predisposition to heat susceptibility (19–21).
Although the precise definition varies, heat stroke is a
highly lethal clinical condition that involves multi-
organ failure and CNS dysfunction, including thermal
dysregulation, in the setting of environmental hyperther-
mia (11,16). Thermally stressed individuals are at
significantly increased risk for heat stroke when the
body’s core temperature exceeds 40�C. Medical
comorbidities and other conditions such as
acclimatization play a significant role in an individual’s
susceptibility to heat stroke and death (22). Heat stroke
is traditionally thought of as a disease associated with
environmental heat waves. Heat waves are usually
defined as 3 or more consecutive days with high temper-
atures that exceed 32.2�C (90�F) (11,16). Currently, little
is known about whether brief exposure to environmental
temperature extremes might result in significantly
increased body temperatures after TBI, and whether
this might cause decreased survival or compromised
functional outcomes.
DISCUSSION

Traumatic Brain Injury

In individuals, body temperature is exquisitely regulated
(23). Although poorly understood, temperature regula-
tion is thought to depend on cold- and heat-sensitive neu-
rons in the CNS that modify local heat production and
blood flow to adjust for changes in the temperature of
incoming blood (24–26). In the case of brain injury,
these normal mechanisms of heat regulation become
disrupted and cause fever, in the absence of an
infectious source. This dysregulation can result in very
high body temperatures, commonly exceeding 41.1�C
(15).

Early care is another factor that seems to affect patient
outcomes after TBI, likely because the initial insult, or
‘‘primary brain injury,’’ is not the sole determiner of out-
comes (27,28). ‘‘Secondary injury’’ to the CNS also
increases disability and the risk of death. When this
happens early in the patient’s course, this potentially
preventable (or perhaps even reversible) damage may
become indelible, despite subsequent optimal
management (8,29–38). Secondary brain injury can
occur through a variety of mechanisms, most of them
by decreasing nutrient delivery to the brain through
decreased cerebral perfusion pressure or cerebral blood
flow. Hypotension and hypoxemia are common causes
of secondary CNS damage, and early hypoxia and
hypotension have been associated with poor outcomes
(6–8,30–35,37,39–54). Similarly, hyperventilation has
been associated with secondary brain injury, acting by
reducing cerebral blood flow through a variety of
mechanisms including global cerebral vasoconstriction
(10).

Therapeutic interventions that target secondary injury
are currently the mainstay of the evidence-based guide-
lines for care of patients with TBI, both in and out
of the hospital (30,55). Current prehospital guidelines
for the care of patients with severe TBI include:
administration of high-flow oxygen, administration of
intravenous fluids to maintain a systolic blood pressure
at or above 90 mm Hg, and, when bag-valve-mask venti-
lation or endotracheal intubation is necessary, maintain
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an End-tidal Carbon Dioxide (ETCO2) between 35 and 45
mm Hg (30). Ongoing investigations evaluate these inter-
ventions to determine if broad application of evidence-
based guidelines for the care of patients with TBI will
improve outcomes (38). Likely due to lack of evidence,
current guidelines for the care of patients with TBI do
not recommendmeasurement of temperature or any effort
to maintain a normal body temperature in the very early
prehospital setting.

Pathophysiology: Elevated Body Temperature as a
Mechanism of Secondary Brain Injury

Hyperthermia causes injury in healthy individuals and is
associated with a broad spectrum of injury patterns
commonly recognized as heat stroke (16). Exposure to
heat alone can cause direct cellular and tissue damage
(56). Fortunately, the damaging effects of heat are nor-
mally mitigated by the expression of heat shock proteins
enabling the brain and other vital organs to tolerate tem-
peratures of up to 41.5�C for short periods of time with
minimal damage (57). This protective ‘‘thermal
threshold’’ seems to be dependent on the ability of the hy-
perthermic individual to maintain normal perfusion,
dissipate heat, and successfully produce protective heat
shock proteins. When unable to mount a successful
response to hyperthermia (due to factors such as age,
dehydration, lack of acclimatization, or genetic polymor-
phisms), individuals are more susceptible to heat and
progress to heat stroke at lower body temperatures (16).
As discussed above, primary brain injury is also likely
to result in increased susceptibility to heat and body tem-
peratures in excess of 41�C.

Heat may induce secondary brain injury through
several mechanisms. In the early prehospital setting in
which patients may be exposed to high ambient tempera-
tures, both systemic and local factors have the potential to
result in secondary brain injury after TBI (58). Secondary
CNS injury from systemic insults such as hypotension,
hypoxia, and hyperventilation have all been linked to
increased mortality after TBI, as discussed above. Even
relatively mild increases in body temperature may exac-
erbate these factors.

Several examples of how elevated temperature
might cause a systemic insult and secondary injury
include the following: increases oxygen utilization, re-
sulting in or exacerbating local or systemic hypoxia;
promotes peripheral vasodilatation, resulting in decreased
central blood volume, thereby inducing hypotension
(16,59,60). Elevated temperature induces tachypnea as a
mechanism of heat dissipation (16). Although the
significance of tachypnea in the absence of endotracheal
intubation is unknown, the potential for tachypnea to
induce hypocarbic vasoconstriction, decreased cerebral
blood flow, and secondary CNS damage has been demon-
strated (10).

Elevated body temperature has several local effects on
the CNS that also may result in secondary damage after
TBI. For example, hyperthermia is associated with disor-
ders in coagulation and microvascular hypercoagulabili-
ty. This has been demonstrated to lead to CNS damage
after injury in several animal studies (60–63). Neurons
also may be exposed to a greater heat burden than other
organ systems. CNS temperature, although tightly
regulated, is higher (by 0.39�–2.5�C) than core body
temperature, potentially exposing neurons to higher
temperatures than other cell types and increasing the
risk of direct cellular damage (56,57,64). Hyperthermia
also seems to result in neuronal excitotoxicity, leading
to increased neurotransmitter release and cellular
depolarization in areas surrounding CNS injury. This
excited state accelerates free radical production and
intercellular acidosis, contributing to additional CNS
damage (65–67).

Elevated Body Temperature in Patients with TBI

Temperature regulation seems to fail after brain injury,
with both EBTs and low temperatures commonly occur-
ring (68,69). The best current information linking
hyperthermia to poor outcomes after TBI come from
the hospital setting. In the ICU, observational studies
have demonstrated that ‘‘fever burden’’ (both the height
of fever and duration of fever) is associated with poor
outcomes after TBI, even after controlling for severity
of injury. Indeed, in several studies, fever was
associated with a statistically significant increase in the
length of ICU stay, lower Glasgow Coma Scale score
on discharge from the ICU, and lower neurologic
function at 6 months after initial injury (12,13). In
addition, fever measured in the first 3 days of
hospitalization seems to be associated with increased
mortality (14). These observations have lead to several
recommendations for aggressive and strict control of tem-
perature in the ICU (11,70).

Although these data suggest that the fever after TBI is
an independent predictor of mortality, it is very unlikely
that ambient temperatures contribute to this effect. In
the climate-controlled environment of an ICU, hyperther-
mia is much more likely to be a result of brain injury
caused by thermodysregulation and the acute-phase reac-
tion associated with critical illness (15,71). In fact, EBTs
are seen in the hospital after many types of critical
illnesses, including cardiac arrest, stroke, and spinal
cord injury (65).

EBT very early in a TBI patient’s course is much more
likely to be due to the effects of ambient environmental
temperatures than to other causes. This early EBT has
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been documented both in the field and on arrival at the
hospital. Recent combat experience in Iraq and
Afghanistan has demonstrated that when injury occurs
in a hot environment, it often is associated with EBT.
This may be seen in 7.4% of general trauma patients
and in as many as 47% of patients with TBI (69,72,73).
A report by Wade et al. suggests that EBT in the field
may be associated with increased risk of death.
Mortality has been reported as 2.3% in patients with a
normal temperature, compared to 14% in patients with
a temperature > 38�C (69). Unfortunately, the study re-
porting this was an unadjusted retrospective analysis of
outcomes, and patients with an elevated temperature
also had more serious injuries, as indicated by the
significantly higher Trauma–Injury Severity Score and
Injury Severity Score in the group of patients with
EBT. Although these injuries occurred in a warm region,
there is little evidence to directly link the elevated tem-
perature in the field, or on arrival at the hospital, to envi-
ronmental heat exposure. The only study we identified
as attempting to link environmental temperatures with
TBI outcomes demonstrated no association between
environmental temperatures and any measured outcome
after injury (74).

Treatment of Hyperthermia and TBI Outcomes

We have been unable to find any studies that specifically
evaluate the effect of treating or preventing hyperthermia
in TBI patients. Given the limited knowledge in this
arena, it is not surprising that the most recent editions
of the Brain Trauma Foundation guidelines for hospital
and prehospital care of patients do not address this ques-
tion (16,56). The few published recommendations
regarding the management of EBT and hyperthermia
after TBI recommend that, in the very controlled ICU
setting, body temperature should be controlled (11).
Yet, it has been widely recognized that control of hyper-
thermia is difficult and not without risk (e.g., hypoten-
sion, increased bleeding due to hypothermia-associated
coagulopathy) (70). Perhaps the best proxy for attempting
to understand the early management of EBT/hyperther-
mia in TBI patients is the plethora of trials evaluating
the effect of mild therapeutic hypothermia on TBI.

A great deal of work has been done on therapeutic hy-
pothermia for the treatment of severe TBI. Unfortunately,
despite multiple high-quality studies being conducted, re-
sults have been inconclusive at best, with several trials
demonstrating no effect on mortality or nonmortality out-
comes related to control of temperature (31,75). One
major problem encountered in several therapeutic
hypothermia trials has been the high incidence of fever
after therapeutic hypothermia. Some have suggested
that these episodes of fever may be responsible for
some of the negative study results (76). Despite attempts
to control fever, these studies have found no improvement
in outcomes (76). Two recent meta-analyses evaluating
the effectiveness of therapeutic hypothermia in TBI
have suggested that the procedure of cooling the brain
should occur only in the setting of randomized clinical tri-
als because there is not enough scientific evidence to sup-
port the routine use of this technique for managing TBI
(77,78).

Any discussion of treating EBTs must consider that
inadvertent hypothermia is a significant risk even in an
ICU setting, let alone in the earlier environments of an
ED or prehospital setting. In uncontrolled settings, with
disrupted thermoregulation, inadvertent hypothermia is
common and poses significant risks to TBI patients
(68,69). This is particularly relevant because several
studies indicate that early hypothermia in trauma
patients results in increased mortality (79–81). Not only
is hypothermia associated with a significant risk of
death, but it also causes hypotension, which is known to
cause secondary brain injury. Further, correction of
hypothermia has been associated with improved
outcomes after injury (82). Any measure taken to prevent
EBT/hyperthermia must carefully consider the risk of
inadvertent hypothermia and the other associated mecha-
nisms of secondary injury.

In our literature review, wewere unable to identify suf-
ficient evidence to determine whether environmentally
induced hyperthermia causes significant secondary brain
injury or whether any interventions to correct or prevent
hyperthermia might improve outcomes. In the controlled
hospital setting, it seems that a temperature management
strategy targeting normothermia may be the best option to
prevent secondary brain injury. However, even this
approach is based upon a weak and controversial litera-
ture.

CONCLUSION

In the hospital setting, evidence from observational
studies suggests that thermodysregulation after TBI is
common, and that EBTs after TBI are associated with
poor functional outcomes and increased mortality. Recent
observational studies suggest that EBTs occur frequently
in the prehospital setting after exposure to high environ-
mental temperatures. It remains unclear whether temper-
ature elevation is a result of exposure to ambient
environmental temperature extremes or is part of the
acute phase response that is common in patients after se-
vere injury or cardiac arrest. Furthermore, it remains un-
known whether EBTs occurring soon after the injury are
associated with increased mortality or worsened func-
tional outcomes. Further study is needed to clarify the
relationship between environmental heat exposure,



Hyperthermia in TBI 379
EBTs, bona fide hyperthermia, and outcomes after TBI.
Although it is tempting to implement therapeutic inter-
ventions aimed at treating elevated body temperature in
TBI patients, the unintended consequence of overcorrec-
tion, creating inadvertent hypothermia, may be more
harmful than the hyperthermia itself. Further evaluation
of hospital-based initiatives that target normothermia
are required before any consideration should be given
to the potential for trying to manage body temperature
prior to arrival at the hospital.
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ARTICLE SUMMARY

1. Why is this topic important?
Traumatic brain injury (TBI) is common, and very early

(prehospital) alterations in physiologic variables (hypo-
tension, hypoxia, and hypocarbia) are associated with
poor outcomes. It is unknown if elevated body tempera-
tures (EBTs) have the same effect on outcomes.
2. What does this review attempt to show?

This review evaluates the potential for EBTs to occur
after TBI in the prehospital setting, as well as the potential
of early EBTs to result in secondary brain injury after TBI.
3. What are the key findings?

EBTs have the potential to cause secondary brain injury
and are associated with poor outcomes when an EBT oc-
curs in the hospital. In the prehospital setting, EBTs occur
commonly; however, it remains unclear what causes early
EBTs and if early EBTs have a significant impact on pa-
tient outcomes.
4. How is patient care impacted?

The current literature does not support any intervention
to treat EBTs in the prehospital setting.
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